Too Good to be True?

Global climate change is a serious environmental threat, and sound public policies are needed to address it effectively and sensibly.

There is now significant interest and activity within both the U.S. Administration and the U.S. Congress to develop a meaningful national climate policy in this country.  (If you’re interested, please see some of my previous posts:  “Opportunity for a Defining Moment” (February 6, 2009); “The Wonderful Politics of Cap-and-Trade:  A Closer Look at Waxman-Markey” (May 27, 2009); “Worried About International Competitiveness?  Another Look at the Waxman-Markey Cap-and-Trade Proposal” (June 18, 2009); “National Climate Change Policy:  A Quick Look Back at Waxman-Markey and the Road Ahead” (June 29, 2009).  For a more detailed account, see my Hamilton Project paper, A U.S. Cap-and-Trade System to Address Global Climate Change.)

And as we move toward the international negotiations to take place in December of this year in Copenhagen, it is important to keep in mind the global commons nature of the problem, and hence the necessity of designing and implementing an international policy architecture that is scientifically sound, economically rational, and politically pragmatic.

Back in the U.S., with domestic action delayed in the Senate, several states and regions in the United States have moved ahead with their own policies and plans.  Key among these is California’s Global Warming Solutions Act of 2006, intended to return the state’s greenhouse gas (GHG) emissions in 2020 to their 1990 level.  In 2006, three studies were released indicating that California can meet its 2020 target at no net economic cost.  That is not a typographical error.  The studies found not simply that the costs will be low, but that the costs will be zero, or even negative!  That is, the studies found that California’s ambitious target can be achieved through measures whose direct costs would be outweighed by offsetting savings they create, making them economically beneficial even without considering the emission reductions they may achieve.  Not just a free lunch, but a lunch we are paid to eat!

Given the substantial emission reductions that will be required to meet California’s 2020 target, these findings are ­- to put it mildly – surprising, and they differ dramatically from the vast majority of economic analyses of the cost of reducing GHG emissions.  As a result, I was asked by the Electric Power Research Institute – along with my colleagues, Judson Jaffe and Todd Schatzki of Analysis Group – to evaluate the three California studies.

In a report titled, “Too Good To Be True?  An Examination of Three Economic Assessments of California Climate Change Policy,” we found that although some limited opportunities may exist for no-cost emission reductions, the studies substantially underestimated the cost of meeting California’s 2020 target — by omitting important components of the costs of emission reduction efforts, and by overestimating offsetting savings some of those efforts yield through improved energy efficiency.  In some cases, the studies focused on the costs of particular actions to reduce emissions, but failed to consider the effectiveness and costs of policies that would be necessary to bring about those actions.  Just a few of the flaws we identified lead to underestimation of annual costs on the order of billions of dollars.  Sadly, the studies therefore did not and do not offer reliable estimates of the cost of meeting California’s 2020 target.

This episode is a reminder of a period when similar studies were performed by the U.S. Department of Energy at the time of the Kyoto Protocol negotiations.  Like the California studies, the DOE (Interlaboratory Work Group) studies in the late 1990s suggested that substantial emission reductions could be achieved at no cost.  Those studies were terribly flawed, which was what led to their faulty conclusions.  I had thought that such arguments about massive “free lunches” in the energy efficiency and climate domain had long since been laid to rest.  The debates in California (and some of the rhetoric in Washington) prove otherwise.

While the Global Warming Solutions Act of 2006 sets an emissions target, critical policy design decisions remain to be made that will fundamentally affect the cost of the policy.  For example, policymakers must determine the emission sources that will be regulated to meet those targets, and the policy instruments that will be employed.  The California studies do not directly address the cost implications of these and other policy design decisions, and their overly optimistic findings may leave policymakers with an inadequate appreciation of the stakes associated with the decisions that lie ahead.

On the positive side, a careful evaluation of the California studies highlights some important policy design lessons that apply regardless of the extent to which no-cost emission reduction opportunities really exist.  Policies should be designed to account for uncertainty regarding emission reduction costs, much of which will not be resolved before policies must be enacted.  Also, consideration of the market failures that lead to excessive GHG emissions makes clear that to reduce emissions cost-effectively, policymakers should employ a market-based policy (such as cap-and-trade) as the core policy instrument.

The fact that the three California studies so egregiously underestimated the costs of achieving the goals of the Global Warming Solutions Act should not be taken as indicating that the Act itself is necessarily without merit.  As I have discussed in previous posts, that judgment must rest – from an economic perspective – on an honest and rigorous comparison of the Act’s real benefits and real costs.

Share

What Role for U.S. Carbon Sequestration?

With the development of climate legislation proceeding in the U.S. Senate, a key question is whether the United States can cost-effectively reduce a significant share of its contributions to increased atmospheric CO2 concentrations through forest-based carbon sequestration.  Should biological carbon sequestration be part of the domestic portfolio of compliance activities?

The potential costs of carbon sequestration policies should be one major criterion, and so it can be helpful to assess the cost of supplying forest-based carbon sequestration.  This is a topic which I’ve investigated in a series of papers with various co-authors over the past ten years (“Land-Use Change and Carbon Sinks: Econometric Estimation of the Carbon Sequestration Supply Function.” Journal of Environmental Economics and Management 51(2006): 135-152, with Ruben Lubowski and Andrew Plantinga; “Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration.” Journal of Environmental Economics and Management 40(2000):211-235, with Richard Newell; and “The Costs of Carbon Sequestration: A Revealed-Preference Approach.” American Economic Review, volume 89, number 4, September 1999, pp. 994-1009.)   Most useful for policy purposes is probably the 2005 report Kenneth Richards and I wrote for the Pew Center on Global Climate Change (“The Cost of U.S. Forest-Based Carbon Sequestration”).  In that report, we surveyed and synthesized the best cost estimates from all available sources.

Human activities — particularly the extraction and burning of fossil fuels and the depletion of forests — are causing the level of CO2 in the atmosphere to rise.  It may be possible to increase the rate at which ecosystems remove CO2 from the atmosphere and store the carbon in plant material, decomposing detritus, and organic soil.  In essence, forests and other highly productive ecosystems can become biological scrubbers by removing (sequestering) CO2 from the atmosphere.  Much of the current interest in carbon sequestration has been prompted by suggestions that sufficient lands are available to use sequestration for mitigating significant shares of annual CO2 emissions, and related claims that this approach provides a relatively inexpensive means of addressing climate change.  In other words, the fact that policy makers are giving serious attention to carbon sequestration can partly be explained by (implicit) assertions about its marginal cost, or (in economists’ parlance) its supply function, relative to other mitigation options.

Among the key factors that affect estimates of the cost of forest carbon sequestration are: (1) the tree species involved, forestry practices utilized, and related rates of carbon uptake over time; (2) the opportunity cost of the land-that is, the value of the affected land for alternative uses; (3) the disposition of biomass through burning, harvesting, and forest product sinks; (4) anticipated changes in forest and agricultural product prices; (5) the analytical methods used to account for carbon flows over time; (6) the discount rate employed in the analysis; and (7) the policy instruments used to achieve a given carbon sequestration target.

Given the diverse set of factors that affect the cost and quantity of potential forest carbon sequestration in the United States, it should not be surprising that cost studies have produced a broad range of estimates.  Ken Richards and I identified eleven previous analyses that were good candidates for comparison and synthesis, and we made their results mutually consistent by adjusting them for constant-year dollars, use of equivalent annual costs as outcome measures, identical discount rates, and identical geographic scope.  We also employed econometric methods to estimate the central tendency (or “best-fit”) of the normalized marginal cost functions from the eleven studies as a rough guide for policy makers of the projected availability of carbon sequestration at various costs.

Three major conclusions emerged from our survey and synthesis.  First, there is a broad range of possible forest-based carbon sequestration opportunities available at various magnitudes and associated costs.  The range depends upon underlying biological and economic assumptions, as well as analytical cost-estimation methods employed.

Second, a systematic comparison of sequestration supply estimates from national studies produces a range of $25 to $75 per ton for a program size of 300 million tons of annual carbon sequestration. The range increases somewhat- to $30-$90 per ton of carbon-for programs sequestering 500 million tons annually.

Third, when a transparent and accessible econometric technique was employed to estimate the central tendency (or “best-fit”) of costs estimated in the studies, the resulting supply function for forest-based carbon sequestration in the United States is approximately linear up to 500 million tons of carbon per year, at which point marginal costs reach approximately $70 per ton.

A 500 million ton per year sequestration program would be very significant, offsetting approximately one-third of annual U.S. carbon emissions.  At this level, the estimated costs of carbon sequestration are comparable to typical estimates of the costs of emissions abatement through fuel switching and energy efficiency improvements.  This result indicates that sequestration opportunities ought to be included in the economic modeling of climate policies.  And it further suggest that if it is possible to design and implement a domestic carbon sequestration program, then such a program ought to be included in a cost-effective portfolio of compliance strategies when the United States enacts a mandatory domestic greenhouse gas reduction program.  Large-scale forest-based carbon sequestration can be a cost-effective tool that should be considered seriously by policy makers.

Of course, this raises the question of whether a policy that will bring about such biological carbon sequestration cost-effectively can be developed, whether as part of a cap-and-trade system, a related offset scheme, or through some other policy mechanism.  That is a question without easy answers (as I’ve noted in a previous post on the Waxman-Markey legislation), but the cost analyses I’ve reviewed in this post suggest that it is important to explore possible ways of incorporating biological carbon sequestration in future U.S. climate policy.

Share