A Key Element for the Forthcoming Paris Climate Agreement

The upcoming Paris climate negotiations will constitute a critical step in the ongoing international process to reduce global greenhouse gas (GHG) emissions. The question of whether the Paris outcome will be sufficiently ambitious to put the world on a path towards limiting global average warming to 2o C, as agreed in Cancun, can be answered now.  It will not, because that target, while possibly useful as an aspirational goal, is not achievable, as the most recent report of Working Group III of the IPCC documented. What is clear, however, is that greater ambition is more easily realized when costs are low. Market-based mechanisms are an important element in the portfolio of actions that can lead to cost-effective solutions. Linkage – between and among market and non-market systems for reducing GHG emissions – is a closely-related key element.

In an article just published in Climate Policy, “Facilitating Linkage of Climate Policies through the Paris Outcome,” my co-authors – Daniel Bodansky of Arizona State University, Seth Hoedl of Harvard Law School, and Gilbert Metcalf of Tufts University – and I examine how the Paris outcome, and more generally the ongoing climate negotiations, can allow for and advance linked systems.

Brief Background

In the Durban Platform for Enhanced Action, adopted by the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) in 2011, the parties agreed to develop a “protocol, another legal instrument or an agreed outcome with legal force under the Convention applicable to all Parties,” for adoption at COP-21 in December, 2015, in Paris. It is likely that the Paris outcome will reflect a hybrid climate policy architecture – one that combines top-down elements, such as for monitoring, reporting, and verification (MRV), with bottom-up elements, including “Intended Nationally Determined Contributions” (INDCs), describing what a country intends to do to reduce emissions, based on domestic political feasibility and other factors. This outcome will be embodied in a core agreement, which likely will be legally binding, as well as ancillary instruments such as annexes, national schedules, and COP decisions.

The ability to link regional, national, and sub-national climate policies will be essential to enhancing the cost-effectiveness of such a system – and thus the likelihood of achieving significant global emissions reductions. By ‘linkage’, we mean formal recognition by a GHG mitigation program in one jurisdiction (a regional, national, or sub-national government) of emission reductions undertaken in another jurisdiction for the purposes of complying with the first jurisdiction’s requirements.

First Necessity for Paris: Do No Harm

The minimum requirement for the Paris agreement in regard to linkage is to do no harm. Silence on linkage could possibly accomplish that. But any provisions in the agreement that would require nations to achieve their respective INDCs exclusively within their own borders – a constraint that has been favored by the ALBA countries – would, in effect, prohibit not only international carbon markets but any sort of meaningful linkage (and would thereby greatly drive up costs).

Common Definitions of Key Terms

If linkage is to play a significant role in a hybrid international policy architecture, then several categories of design elements merit serious consideration for inclusion in the Paris outcome, either directly or by establishing a process for subsequent international negotiations. In general, effective linkage requires common definitions of key terms, including particularly the units to be used for compliance purposes. This will be particularly important for links between heterogeneous systems, and it is an area where a model rule could be particularly helpful (more about this below).

Registries and Tracking

Linkage requires registries and tracking mechanisms, whether the systems being linked are homogeneous or heterogeneous. Indeed, a key role for the top-down part of a hybrid architecture that allows for international linkage of national policy instruments will be the tracking, reporting, and recording of allowance unit transactions.

International compliance units would make the functioning of an international transaction log more straightforward and reduce the administrative burden of reconciling international registries with national registries. Minimum standards for approving and measuring offsets may be important. Market oversight and monitoring may increase confidence in the system, although in some cases, national and international institutions that can provide oversight already exist and may need only relatively minor additional capacity to assume these functions.

Too Much of a Good Thing Can be Bad

Including detailed linkage rules in the core agreement is not desirable as this could make it difficult for rules to evolve in light of experience. Instead, minimum standards to ensure environmental integrity should be elaborated in COP decisions, or by other means; for example, the COP could establish minimum requirements for national monitoring, reporting, and verification (MRV), registries, and crediting mechanisms.

In terms of linkage, the function of the core agreement might be confined to articulating general principles relating to environmental integrity, while also authorizing the COP or another organization to develop more detailed rules. Whatever minimum standards are adopted, oversight of compliance will be important to ensure the integrity both of the Paris outcome and of linked national systems.

The Utility of Default or Model Rules

Many elements of GHG linkage can be addressed through default or model rules from which nations are free to deviate at their discretion. Rules that may benefit from this approach are typically concerned with the details of linking two regulatory systems. For example, nations interested in linking their cap-and-trade systems would have to consider rules for market coverage, cost containment, banking and borrowing, compliance periods, allocation methods, and the treatment of new emitters and emitter closures. Additional rules may be needed for linking of heterogeneous systems.

Developing uniform rules to address all of these issues is unrealistic. Instead, a degree of harmonization could be achieved through default rules that facilitate linkage by providing a common framework for nations to use when developing their own linkage agreements. Although there is no need for the core agreement itself to elaborate harmonized linkage rules, it might authorize the COP to develop default linkage rules that nations can use in negotiating bilateral linkage agreements.

Less is More

In our Climate Policy article, Dan Bodansky, Seth Hoedl, Gib Metcalf, and I conclude that the most valuable outcome of Paris regarding linkage might simply be the inclusion in the core agreement of an explicit statement that parties may transfer portions of their INDCs to other parties and that these transferred units may be used by the transferees to implement their INDCs. Such a statement would help provide certainty both to governments and private market participants. This minimalist approach will allow diverse forms of linkage to arise, among what will inevitably be highly heterogeneous INDCs, thereby advancing the dual objectives of cost effectiveness and environmental integrity in the international climate policy regime.

Share

Crude Oil Prices, Climate Change, and Global Welfare

A few weeks ago, I participated in a panel session titled, “The Remarkable Transformation of the Energy Sector: Does it Also Transform Our World.” The motivating question was: “Is the dramatic decline in oil prices a complete gift to the West because of the enormous funds being saved, or is it an unintended Trojan horse because development of renewable energy as well as new fossil-fuel sources will decline in the West, posing longer new challenges?”

The other members of the panel – from private industry – had vastly more expertise (and relevant insights) on fossil-fuel markets, but here’s what I had to say. This is hardly at the sweet spot of my professional competence, so I welcome your comments and corrections! In general, how would you answer that question?

Causes

I start (and started) from the premise that the dramatic decline in crude oil prices that took place from August, 2014 ($96/barrel), to March, 2015 ($44/barrel), was due – on the one hand – to decreased demand, a function of slow economic growth in Asia, Europe, and elsewhere, endogenous, price-driven technological change leading to greater fuel efficiency, and policy-driven technological change that also has been leading to greater fuel efficiency, such as more stringent Corporate Average Fuel Economy (CAFE) standards in the United States; and – on the other hand – was due to increased supply, partly a function of the growth of unconventional (tight) U.S. oil production (a product of the combination of two technologies – horizontal drilling and hydraulic fracturing).  And, in the presence of all of this, Saudi Arabia decided not to restrict its output to prop up prices.

[Before proceeding, I should note that since May of this year, crude oil prices have increased by about 30% from their March low, but as of May ($60/barrel) are still far below their August 2014 level.]

Consequences

When one examines virtually any significant price change from an economic perspective, there inevitably seems to be both good news and bad news. So with the fall in crude oil prices.

The Bad News

First of all, I assume that low crude oil prices are problematic for the economic and political stability of some of the oil-producing/exporting countries, including Saudi Arabia, Russia, Venezuela, and Nigeria.  (For details, see Bordoff and Losz 2015, below.)

Second, it’s frequently been asserted that low oil prices are bad news for the development of alternative forms of energy, including renewable sources. Of course, in the United States, there isn’t much effect on electricity generation from renewable (wind and solar), because in the U.S. electricity sector, renewable supplies compete with coal and natural gas, not with fuel oil (but in other countries, which use more fuel oil for electricity generation than we do, there can be a disincentive for renewable dispatch – and hence development).

Third, there can be – indeed, has been – a major impact in the U.S. motor fuels sector, where the market for biofuels (mainly ethanol) is negatively affected by low conventional gasoline prices. However, these impacts must be somewhat muted by public policies, which directly or indirectly subsidize (or, in fact, require) the use of biofuels.

Fourth, low gasoline prices have resulted in decreased demand by consumers for motor vehicles with high fuel efficiency, and SUV and pickup truck sales have rebounded from previous lows. But these effects are also muted, to some degree, by public policies, including U.S. CAFE standards.   Finally, low gasoline prices also have short-term effects in the form of more driving and fuel use by the existing fleet of motor vehicles, which is bad news in terms of emissions (and congestion).

Differences across Sectors

Before turning to the “good news” about low crude oil prices (and there surely is good news), it’s worthwhile noting that whether individual businesses find these low prices to be good or bad depends largely upon the economic sector in which they operate. For example, whereas commercial airlines are finally making profits, due to the low price of jet fuel (their most important variable operating cost), manufacturers of commercial aircraft will see lower demand for new planes if low jet fuel prices become the long-term norm. The primary factor driving the larger airlines to replace aircraft in their fleets is the lower operating costs due to the much greater fuel efficiency of new models.

And, of course, low oil prices are systematically bad news for oil producers, including the major U.S. companies.

The Good News

Finally, here is the upside of these significant changes in crude oil markets.

Low oil prices are unambiguously good for aggregate global welfare. This includes consumers in the United States, Europe, Japan, and South Korea. And, at least temporarily, OPEC seems to have lost its ability to set a price floor.

Low oil prices mean an increase in consumers’ disposable income, amounting to nearly $2,500 per U.S. household annually, according to Stephen Brown (see below).  If we subtract the income losses to U.S. oil producers, the net gain per U.S. household amounts to a bit more than $800 per year, with gains accruing disproportionately to low-income households.

Turning to the environmental realm, there is also good news, or at least the possibility of good news. An opportunity for new, sensible energy and climate change policies has emerged with these low oil prices.

First, now is the time to reduce – or better yet, phase out – costly and inefficient fuel subsidies, which exist in many parts of the world, particularly in developing countries.

Second, with gasoline prices relatively low – and natural gas supplies holding down electricity prices, at least in the United States – there has never been a better time to introduce progressive climate policies in the form of carbon-pricing, whether via carbon taxes or through carbon cap-and-trade. Unfortunately, none of us should hold our breath waiting for that to happen.

—————————————————————————————————-

For further reading, I recommend:

Bordoff, Jason, and Akos Losz.  “Oil Shock: Decoding the Causes and Consequences of the 2014 Oil Price Drop.”  Horizons, Spring 2015, Issue No. 3, pp. 190-206.

Brown, Stephen P. A.  “Falling Oil Prices: Implications in the United States.” Resources, Number 189.  Washington:  Resources for the Future, 2015, pp. 40-44.

Share

Assessing the Energy-Efficiency Gap

Global energy consumption is on a path to grow 30-50 percent over the next 25 years, bringing with it, in many countries, increased local air pollution, greenhouse gas (GHG) emissions, and oil consumption, as well as higher energy prices.  Energy-efficient technologies offer considerable promise for reducing the costs and environmental damages associated with energy use, but these technologies appear not to be used by consumers and businesses to the degree that would apparently be justified, even on the basis of their own (private) financial net benefits.

For some thirty years, there have been discussions and debates about this phenomenon among researchers and others in academia, government, non-profits, and private industry, typically couched in terms of potential explanations of the so-called “energy efficiency gap” or “energy paradox.”

Thinking About the Energy-Efficiency Gap

I wrote about this some two years ago at this blog ().  I  noted then that Professor Richard Newell of Duke University and I had just launched an initiative – sponsored by the Alfred P. Sloan Foundation — to synthesize past work on potential explanations of the energy paradox and identify key gaps in knowledge. We subsequently conducted a comprehensive review and assessment of social-science research on the adoption of energy-efficient technologies.

We worked with leading social scientists — including scholars from economics, psychology, and other disciplines, at a workshop held at Harvard — to examine the various possible explanations of the energy paradox and thereby to help identify the frontiers of knowledge on the diffusion of energy-efficient technologies.  As materials became available, we posted them at the project’s Harvard website and the project’s Duke website.

Releasing a New Monograph

I’m pleased to inform readers of this blog that we have now released a major monograph, Assessing the Energy Efficiency Gap, co-authored with Todd Gerarden, a Harvard Ph.D. student in Public Policy and a Pre-Doctoral Fellow of the Harvard Environmental Economics Program (HEEP).  The monograph draws in part from the research workshop held at Harvard (in October 2013), in which most of the U.S.-based scholars (primarily, but not exclusively, economists) then conducting research on the energy-efficiency gap participated. HEEP co-sponsored a second such research workshop with the Centre for European Economic Research (ZEW) in Mannheim, Germany in March 2014, where European economists explored the same topic. Closely-related research was presented by panelists at the annual conference of the Allied Social Science Association in January 2015.

In the new monograph, Gerarden, Newell, and I examine both the “energy paradox,” the apparent reality that some energy-efficiency technologies that would pay off for adopters are nevertheless not adopted, and the broader phenomenon we characterize as the “energy-efficiency gap,” the apparent reality that some energy-efficiency technologies that would be socially efficient are not adopted. The contrast is between private and social optimality, which ultimately has important implications for the role of various policies, as well as their expected net benefits.

Four Key Questions

We begin by decomposing cost-minimizing energy-efficiency decisions into their fundamental elements, which allows us to identify four major questions, the answers to which are germane to sorting out the causes (and reality or lack thereof) of the paradox and gap.

First, we ask whether the energy efficiency and associated pricing of products on the market are economically efficient. To answer this question, we examine the variety of energy-efficient products on the market, their energy-efficiency levels, and their pricing. Although the theory is clear, empirical evidence is—in general—quite limited. More data that could facilitate potential future empirical research are becoming available, although firm-level data are much less plentiful than data on consumers. We do not see this area as meriting high priority for future research, however, with the exception of research that evaluates the effectiveness and efficiency of existing energy-efficiency information policies and examines options for improving these policies.

Second, we ask whether energy operating costs are inefficiently priced and/or understood. Even if consumers make privately optimal decisions, energy-saving technology may diffuse more slowly than the socially optimal rate, because of negative externalities. So, even if the energy paradox is not present, the energy-efficiency gap may be. As in the first realm, the theoretical arguments are strong. Empirical evidence is considerable, and in many cases data are likely to be available for additional research. Existing policies appear not to be sufficient from an economic perspective, suggesting that further research is warranted. Indeed, we ascribe high priority to the pursuit of research in this realm.

Third, we ask whether product choices are cost-minimizing in present-value terms, or whether various market failures and/or behavioral phenomena inhibit such cost-minimization. We find that the empirical evidence ranges from strong (split incentives/agency issues and inattention/salience phenomena) to moderate (heuristic decision-making/bounded rationality, systematic risk, and option value) to weak (learning-by-using, loss aversion, myopia, and capital market failures). Importantly, here, as elsewhere in our review, the bulk of previous work has focused on the residential sector and much less attention has been given to the commercial and industrial sectors. Some areas merit priority for future research, such as empirical analysis of split incentives/agency issues in areas where efficiency standards are not present, and much more work can be done in the behavioral realm.

Fourth, we ask whether other unobserved costs may inhibit energy-efficient decisions. We find that the empirical evidence is generally sound, and that data needed for more research are available. We assign a relatively high priority to future research, particularly to aid understanding of consumer demand for product attributes that are correlated with energy efficiency, thereby informing policy and product development decisions.

Three Categories of Potential Explanations of the Gap

Finally, we ask what these findings have to say about the three categories of explanations (reviewed in detail in my 2013 essay at this blog) for the apparent underinvestment in energy-efficient technologies relative to the predictions of some engineering and economic models: (1) market failures, (2) behavioral effects, and (3) modeling flaws.  In brief, potential market-failure explanations include information problems, energy market failures, capital market failures, and innovation market failures. Potential behavioral explanations include inattentiveness and salience, myopia and short sightedness, bounded rationality and heuristic decision-making, prospect theory and reference-point phenomena, and systematically biased beliefs. Finally, potential modeling flaws include unobserved or understated costs of adoption; ignored product attributes; heterogeneity in benefits and costs of adoption across potential adopters; use of incorrect discount rates; and uncertainty, irreversibility, and option value.

It turns out that all three categories of explanations are theoretically sound and that limited empirical evidence exists for every category as well, although the empirical research is by no means consistently strong across all of the specific explanations.  The validity of each of these explanations—and the degree to which each contributes to the energy-efficiency gap—are relevant for crafting sensible policies, so Gerarden, Newell, and I hope that our new monograph can help inform both future research and policy.  Given the many energy-efficiency policies and programs that are already in place, high priority should be given to research that evaluates the effectiveness, cost-effectiveness, and overall economic efficiency of existing energy-efficiency policies, as well as options for their improvement.

Share